How a Chest Tube Drainage System Works


    How a Chest Tube Drainage System Works

    If you’re like me, you probably hook your chest tube up to a Pleur-Evac, put it on the ground, then back away slowly. Who knows what goes on in that mysterious bubbling white box? Hopefully this will post shed some light.

    Isn’t this just a container for stuff that comes out of the chest? Why does it look so complicated?

    It’s complicated because the detection/collection of air and fluid require different setups. Most commercial models also allow you to hook the drainage system to wall suction, so you can quickly evacuate the pleural space. This requires its own setup. Because of the need to juggle air, fluid and suction, the most common commercial system includes 3 distinct chambers. If you were to simplify the device, or build one out of spare bottles and tubes, it might look like this:


    Bottle 1: Fluid Collection. This is a simple collection bottle that connects directly to your chest tube. Look here to see how much blood you’ve collected from your hemothorax, or fluid from your pleural effusion, or pus from your empyema.
    Bottle 2: Water Seal. This is a more complicated setup that allows you to detect air from your pneumothorax (or from a leak due to equipment failure). To conceptualize this, imagine a straw submerged in a glass of water. If you blow air into the straw, bubbles will come out. Intermittent bubbles mean that there’s interrupted air flow, and continuous bubbles mean that there’s continuous air flow. However, if you try to suck on the straw, only water will come up and not air. This is another way of describing a one-way valve: air can escape the chest, but it can’t come back in.
    Bottle 3: Suction Control. This is the fanciest bottle of all, and includes a manometer that allows you to deliver controlled suction through your chest tube. Fancy versions (like the Atrium Oasis 3600 stocked at Mount Sinai) also incorporate dials and bellows to allow you to turn the suction up and down. There are even fancier systems with dual collection chambers and all sorts of other snazziness.
    The basic three-bottle chest drainage system looks like this in real life (here’s a more detailed explanation):
    Ok, I just put in a chest tube. How do I hook it up properly?
    1. Let’s assume you’re using the Atrium Oasis or a similar 3-bottle system. First, squirt sterile saline or water into the suction port until the water seal chamber is filled to the 2 cm line. 
    2. Connect your chest tube to the drainage system’s “patient catheter.” Note that you need a stepped connector to firmly connect the two. If you really want to secure this connection, you can wrap some silk tape around it (the same kind that you used to dress your patient’s chest).
    3. If you want suction, connect the tubing from your wall suction to the drainage system’s “suction port.” Once connected, turn on your wall suction. There’s a nifty “suction bellows” window that lets you know if your wall suction is strong enough, or if you need to crank it up more. The bellows should expand until they surpass the black arrow.
    4. Pull out the kickstand from the bottom of the drainage system (yes, there is one!). Now place it at least 45 cm below your patient. This usually means on the floor or under the bed. It never means ON the bed.
    How do I troubleshoot it?
    If you’re in our Mount Sinai ED, start here. …or call CT Surgery.
    Thanks to Dr. Eric Bassan and Dr. Reuben Strayer for inspiring this pearl.
    Jean Sun

    Jean Sun

    PGY2 Resident

    More posts by Jean Sun
    • Welcome! This is the website for the Mount Sinai Emergency Ultrasound Division. It serves as an information resource for residents, fellows, medical students and others seeking information about point-of-care ultrasound. There is a lot ofRead more

    • Lidocaine for cough?

      Whether it’s asthma, a U.R.I., or post nasal drip as the cause, cough is a common enough complaint encountered by emergency physicians everywhere. Of course you must always rule out the dangerous causes of coughRead more

    • Measles redux!

      A quick search of for the keyword measles brings up a solitary post from 2015, and it’s not actually about measles. With all the attention that measles has been getting in the news recently,Read more

    • The Apple Watch Heart Study

      Disclosure: I’m a huge Apple Fan. Unless you’ve been living under a rock, you’ve heard about the Apple watch, many of you reading this are wearing one right now. On April 24th, 2015 it joinedRead more

    • Peritonsillar Abscess I&D…Can you ditch the endocavitary probe?

      Today’s post is inspired by real-life events and comes with a video (consent given by the patient and providers). The case: 29M presents with dysphonia, odynophagia, and drooling. He is hypertensive, with a low-grade fever,Read more

    • Look into my seeing EYE ball

      THE EYE EXAM Keep it basic… APD Intra-ocular Pressures: Tono-pen v Applanator (Goldmann) Visual Acuity or be a Slit Lamp KWEEN Move outside in: Lids → Eyeball Lids: ducts, eyelashes, orbital lesions or findings EYE:Read more

    • Oh no baby WHAT IS U DOIN’?

      Neonatal Resuscitation. (Some descriptors for reference: Terrifying. Scary. Fear-inducing. Horrific. Chilling.) But fear not! Your TR pearl today is brought to you by the NICU rotation + Jillian Nickerson/T.Webb doing some excellent preparatory work for/withRead more

    • Amanita Muscaria

      For those of you who remember Super Mario Bros… how awesome was it to gobble up that red and white mushroom gliding along the ground and get huge for a few seconds? The result of consuming thisRead more

    • ED Postpartum Hemorrhage

      So you’re in the ED and a G9P8 patient at 40w2d rolls in with contractions every 3 minutes. Before sending the patient upstairs you do a brief examination and you see this…   You deliverRead more